Java 优先级队列PriorityQueue详解:从源码分析到实践应用

沉默王二Java核心集合框架(容器)约 3529 字大约 12 分钟

6.13 优先级队列PriorityQueue详解

继续有请王老师,来上台给大家讲讲优先级队列 PriorityQueue。

PriorityQueue 是 Java 中的一个基于优先级堆的优先队列实现,它能够在 O(log n) 的时间复杂度内实现元素的插入和删除操作,并且能够自动维护队列中元素的优先级顺序。

通俗来说,PriorityQueue 就是一个队列,但是它不是先进先出的,而是按照元素优先级进行排序的。当你往 PriorityQueue 中插入一个元素时,它会自动根据元素的优先级将其插入到合适的位置。当你从 PriorityQueue 中删除一个元素时,它会自动将优先级最高的元素出队。

下面👇🏻是一个简单的PriorityQueue示例:

// 创建 PriorityQueue 对象
PriorityQueue<String> priorityQueue = new PriorityQueue<>();

// 添加元素到 PriorityQueue
priorityQueue.offer("沉默王二");
priorityQueue.offer("陈清扬");
priorityQueue.offer("小转铃");

// 打印 PriorityQueue 中的元素
System.out.println("PriorityQueue 中的元素:");
while (!priorityQueue.isEmpty()) {
    System.out.print(priorityQueue.poll() + " ");
}

在上述代码中,我们首先创建了一个 PriorityQueue 对象,并向其中添加了三个元素。然后,我们使用 while 循环遍历 PriorityQueue 中的元素,并打印出来。来看输出结果:

PriorityQueue 中的元素:
小转铃 沉默王二 陈清扬 

再来看一下示例。

// 创建 PriorityQueue 对象,并指定优先级顺序
PriorityQueue<String> priorityQueue = new PriorityQueue<>(Comparator.reverseOrder());

// 添加元素到 PriorityQueue
priorityQueue.offer("沉默王二");
priorityQueue.offer("陈清扬");
priorityQueue.offer("小转铃");

// 打印 PriorityQueue 中的元素
System.out.println("PriorityQueue 中的元素:");
while (!priorityQueue.isEmpty()) {
    System.out.print(priorityQueue.poll() + " ");
}

在上述代码中,我们使用了 Comparator.reverseOrder() 方法指定了 PriorityQueue 的优先级顺序为降序。也就是说,PriorityQueue 中的元素会按照从大到小的顺序排序。

其他部分的代码与之前的例子相同,我们再来看一下输出结果:

PriorityQueue 中的元素:
陈清扬 沉默王二 小转铃

对比一下两个例子的输出结果,不难发现,顺序正好相反。

PriorityQueue的作用

PriorityQueue 的主要作用是维护一组数据的排序,使得取出数据时可以按照一定的优先级顺序进行,当我们调用 poll() 方法时,它会从队列的顶部弹出最高优先级的元素。它在很多场景下都有广泛的应用,例如任务调度、事件处理等场景,以及一些算法中需要对数据进行排序的场景。

在实际应用中,PriorityQueue 也经常用于实现 Dijkstra 算法、Prim 算法、Huffman 编码等算法。这里简单说一下这几种算法的作用,理解不了也没关系哈。

Dijkstra算法是一种用于计算带权图中的最短路径的算法。该算法采用贪心的策略,在遍历图的过程中,每次选取当前到源点距离最短的一个顶点,并以它为中心进行扩展,更新其他顶点的距离值。经过多次扩展,可以得到源点到其它所有顶点的最短路径。

Prim算法是一种用于求解最小生成树的算法,可以在加权连通图中找到一棵生成树,使得这棵生成树的所有边的权值之和最小。该算法从任意一个顶点开始,逐渐扩展生成树的规模,每次选择一个距离已生成树最近的顶点加入到生成树中。

Huffman编码是一种基于霍夫曼树的压缩算法,用于将一个字符串转换为二进制编码以进行压缩。该算法的主要思想是通过建立霍夫曼树,将出现频率较高的字符用较短的编码表示,而出现频率较低的字符用较长的编码表示,从而实现对字符串的压缩。在解压缩时,根据编码逐步解析出原字符串。

由于 PriorityQueue 的底层是基于堆实现的,因此在数据量比较大时,使用 PriorityQueue 可以获得较好的时间复杂度。

这里牵涉到了大小关系,元素大小的评判可以通过元素本身的自然顺序(natural ordering),也可以通过构造时传入的比较器Comparator,或者元素自身实现 Comparable 接口)来决定。

在 PriorityQueue 中,每个元素都有一个优先级,这个优先级决定了元素在队列中的位置。队列内部通过小顶堆(也可以是大顶堆)的方式来维护元素的优先级关系。具体来说,小顶堆是一个完全二叉树,任何一个非叶子节点的权值,都不大于其左右子节点的权值,这样保证了队列的顶部元素(堆顶)一定是优先级最高的元素。

完全二叉树(Complete Binary Tree)是一种二叉树,其中除了最后一层,其他层的节点数都是满的,最后一层的节点都靠左对齐。下面是一个完全二叉树的示意图:

        1
      /   \
     2     3
    / \   /
   4   5 6

堆是一种完全二叉树,堆的特点是根节点的值最小(小顶堆)或最大(大顶堆),并且任意非根节点i的值都不大于(或不小于)其父节点的值。

这是一颗包含整数 1, 2, 3, 4, 5, 6, 7 的小顶堆:

      1
     / \
    2   3
   / \ / \
  4  5 6  7

这是一颗大顶堆。

            8
          /   \
         7     5
        / \   / \
       6   4 2   1

因为完全二叉树的结构比较规则,所以可以使用数组来存储堆的元素,而不需要使用指针等额外的空间。

在堆中,每个节点的下标和其在数组中的下标是一一对应的,假设节点下标为i,则其父节点下标为i/2,其左子节点下标为2i,其右子节点下标为2i+1。

假设有一个数组arr=[10, 20, 15, 30, 40],现在要将其转化为一个小顶堆。

首先,我们将数组按照完全二叉树的形式排列,如下图所示:

      10
     /  \
   20    15
  /  \
30   40

从上往下、从左往右依次给每个节点编号,如下所示:

      1
     / \
    2   3
   / \
  4   5

接下来,我们按照上述公式,依次确定每个节点在数组中的位置。例如,节点1的父节点下标为1/2=0,左子节点下标为2*1=2,右子节点下标为2*1+1=3,因此节点1在数组中的位置为0,节点2在数组中的位置为2,节点3在数组中的位置为3。

对应的数组为[10, 20, 15, 30, 40],符合小顶堆的定义,即每个节点的值都小于或等于其子节点的值。

好,我们画幅图再来理解一下。

上图中我们给每个元素按照层序遍历的方式进行了编号,如果你足够细心,会发现父节点和子节点的编号是有联系的,更确切的说父子节点的编号之间有如下关系:

leftNo = parentNo\*2+1

rightNo = parentNo\*2+2

parentNo = (nodeNo-1)/2

通过上述三个公式,可以轻易计算出某个节点的父节点以及子节点的下标。这也就是为什么可以直接用数组来存储堆的原因。

方法剖析

add()和 offer()

add(E e)offer(E e)的语义相同,都是向优先队列中插入元素,只是Queue接口规定二者对插入失败时的处理不同,前者在插入失败时抛出异常,后则则会返回false。对于PriorityQueue这两个方法其实没什么差别。

新加入的元素可能会破坏小顶堆的性质,因此需要进行必要的调整。

//offer(E e)
public boolean offer(E e) {
    if (e == null)//不允许放入null元素
        throw new NullPointerException();
    modCount++;
    int i = size;
    if (i >= queue.length)
        grow(i + 1);//自动扩容
    size = i + 1;
    if (i == 0)//队列原来为空,这是插入的第一个元素
        queue[0] = e;
    else
        siftUp(i, e);//调整
    return true;
}

上述代码中,扩容函数grow()类似于ArrayList里的grow()函数,就是再申请一个更大的数组,并将原数组的元素复制过去,这里不再赘述。需要注意的是siftUp(int k, E x)方法,该方法用于插入元素x并维持堆的特性。

//siftUp()
private void siftUp(int k, E x) {
    while (k > 0) {
        int parent = (k - 1) >>> 1;//parentNo = (nodeNo-1)/2
        Object e = queue[parent];
        if (comparator.compare(x, (E) e) >= 0)//调用比较器的比较方法
            break;
        queue[k] = e;
        k = parent;
    }
    queue[k] = x;
}

调整的过程为:k指定的位置开始,将x逐层与当前点的parent进行比较并交换,直到满足x >= queue[parent]为止。注意这里的比较可以是元素的自然顺序,也可以是依靠比较器的顺序。

element()和 peek()

element()peek()的语义完全相同,都是获取但不删除队首元素,也就是队列中权值最小的那个元素,二者唯一的区别是当方法失败时前者抛出异常,后者返回null。根据小顶堆的性质,堆顶那个元素就是全局最小的那个;由于堆用数组表示,根据下标关系,0下标处的那个元素既是堆顶元素。所以直接返回数组0下标处的那个元素即可

代码也就非常简洁:

//peek()
public E peek() {
    if (size == 0)
        return null;
    return (E) queue[0];//0下标处的那个元素就是最小的那个
}

remove()和 poll()

remove()poll()方法的语义也完全相同,都是获取并删除队首元素,区别是当方法失败时前者抛出异常,后者返回null。由于删除操作会改变队列的结构,为维护小顶堆的性质,需要进行必要的调整。

PriorityQueue_poll.png
PriorityQueue_poll.png

代码如下:

public E poll() {
    if (size == 0)
        return null;
    int s = --size;
    modCount++;
    E result = (E) queue[0];//0下标处的那个元素就是最小的那个
    E x = (E) queue[s];
    queue[s] = null;
    if (s != 0)
        siftDown(0, x);//调整
    return result;
}

上述代码首先记录0下标处的元素,并用最后一个元素替换0下标位置的元素,之后调用siftDown()方法对堆进行调整,最后返回原来0下标处的那个元素(也就是最小的那个元素)。重点是siftDown(int k, E x)方法,该方法的作用是k指定的位置开始,将x逐层向下与当前点的左右孩子中较小的那个交换,直到x小于或等于左右孩子中的任何一个为止

//siftDown()
private void siftDown(int k, E x) {
    int half = size >>> 1;
    while (k < half) {
      //首先找到左右孩子中较小的那个,记录到c里,并用child记录其下标
        int child = (k << 1) + 1;//leftNo = parentNo*2+1
        Object c = queue[child];
        int right = child + 1;
        if (right < size &&
            comparator.compare((E) c, (E) queue[right]) > 0)
            c = queue[child = right];
        if (comparator.compare(x, (E) c) <= 0)
            break;
        queue[k] = c;//然后用c取代原来的值
        k = child;
    }
    queue[k] = x;
}

remove(Object o)

remove(Object o)方法用于删除队列中跟o相等的某一个元素(如果有多个相等,只删除一个),该方法不是Queue接口内的方法,而是Collection接口的方法。由于删除操作会改变队列结构,所以要进行调整;又由于删除元素的位置可能是任意的,所以调整过程比其它方法稍加繁琐。

具体来说,remove(Object o)可以分为 2 种情况:

  1. 删除的是最后一个元素。直接删除即可,不需要调整。
  2. 删除的不是最后一个元素,从删除点开始以最后一个元素为参照调用一次siftDown()即可。此处不再赘述。

具体代码如下:

//remove(Object o)
public boolean remove(Object o) {
  //通过遍历数组的方式找到第一个满足o.equals(queue[i])元素的下标
    int i = indexOf(o);
    if (i == -1)
        return false;
    int s = --size;
    if (s == i) //情况1
        queue[i] = null;
    else {
        E moved = (E) queue[s];
        queue[s] = null;
        siftDown(i, moved);//情况2
        ......
    }
    return true;
}

小结

PriorityQueue 是一个非常常用的数据结构,它是一种特殊的堆(Heap)实现,可以用来高效地维护一个有序的集合。

  • 它的底层实现是一个数组,通过堆的性质来维护元素的顺序。
  • 取出元素时按照优先级顺序(从小到大或者从大到小)进行取出。
  • 如果需要指定排序,元素必须实现 Comparable 接口或者传入一个 Comparator 来进行比较。

参考链接:https://github.com/CarpenterLee/JCFInternalsopen in new window,作者:李豪,整理:沉默王二


GitHub 上标星 7600+ 的开源知识库《二哥的 Java 进阶之路open in new window》第一版 PDF 终于来了!包括Java基础语法、数组&字符串、OOP、集合框架、Java IO、异常处理、Java 新特性、网络编程、NIO、并发编程、JVM等等,共计 32 万余字,可以说是通俗易懂、风趣幽默……详情戳:太赞了,GitHub 上标星 7600+ 的 Java 教程open in new window

微信搜 沉默王二 或扫描下方二维码关注二哥的原创公众号沉默王二,回复 222 即可免费领取。